Binary Coded Unary Regular Languages

Viliam Geffert

Department of Computer Science, P. J. Šafárik University Jesenná 5, 04154 Košice, Slovakia viliam.geffert@upjs.sk

Abstract. $\mathcal{L} \subseteq \{0,1\}^*$ is a binary coded unary regular language, if there exists a unary regular language $\mathcal{L}' \subseteq \{a\}^*$ such that a^x is in \mathcal{L}' if and only if the binary representation of x is in \mathcal{L} . If a unary language \mathcal{L}' is accepted by an optimal deterministic finite automaton (DFA) \mathcal{A}' with n states, then its binary coded version \mathcal{L} is regular and can be accepted by a DFA \mathcal{A} using at most n states, but at least $1+\lceil \log n \rceil$ states. There are witness languages matching these upper and lower bounds exactly, for each n.

More precisely, if \mathcal{A}' uses $\sigma \geq 0$ states in the initial segment and $\mu \cdot 2^{\ell}$ states in the loop, where μ is odd and $\ell \geq 0$, then the optimal \mathcal{A} for \mathcal{L} consists of a preamble with at most σ but at least max $\{1, 1+\lceil \log \sigma \rceil -\ell\}$ states, except for $\sigma = 0$ with no preamble, and a kernel with at most $\mu \cdot 2^{\ell}$ but at least $\mu + \ell$ states. Also these lower bounds are matched exactly by witness languages, for each σ, μ, ℓ .

The conversion in the opposite way is not always granted: there are binary regular languages the unary versions of which are not even context free.

Removing nondeterminism in a nondeterministic finite automaton (NFA) accepting a binary coded unary language requires at least 2^{n-1} states in the worst case. A conversion of a unary NFA for \mathcal{L}' to an NFA for the binary coded version \mathcal{L} is bounded by $O(n^2)$, and a unary NFA to a binary DFA by Landau's function, with the growth rate $e^{(1+o(1)\cdot\sqrt{n\cdot\ln n})}$.

Keywords: finite automata \cdot unary regular languages \cdot state complexity